Given that use of UL486F rated ferrules "Converts" rated wires to solid or B/C stranded, this comparison of AWG and mm2 wires, single and twin ferrules, calculates solid, B/C AWG equivalents for AWG & mm2 IEC metric wire to show which equivalent AWG number falls inside the permitted B, C, or solid wire range ratings an example rating AWG range like 2-6 AWG would include 2.01-5.99 AWG if at the same torque rating of connector

Table 1. uses exact AWG wire sizes and converts to the odd AWG sizes in a twin ferrule

Table 2. uses exact mm2 sizes and converst to approximate mm2 sizes in a twin ferrule

Conversions are done based on Cmils (circular millimteters). As an example, an 18AWG Twin Ferrule accepts (2) #18 AWG wires and the resulting Cmils of the combined wires is the equivalent of a single #15 AWG.

THE UL486F FERRULE USED MUST BE RATED FOR THE CLASS OF STRANDING IN USE & CRIMPED WITH THE DESIGNATED TOOL Table 1

Wire size of a single wire

Approximate wire size when putting two wires into a twin ferrule

Approximate wire size when putting two wires into a twin ferrule

AWG		SINGLE	SINGLE	TWIN (X2)	TWIN (X2)	AWG TWIN (X2)	AWG TWIN (X2)	AWG Aughts		
Aughts	AWG	Cmils	mm2	Cmils	mm2	Logical #	Rounded			
	18	1624	0.82	3249	1.65	15.01	15			
	16	2583	1.31	5165	2.62	13.01	13			
	14	4107	2.08	8213	4.16	11.01	11			
	12	6530	3.31	13060	6.62	9.01	9			
	10	10383	5.26	20766	10.52	7.01	7			
	8	16510	8.37	33019	16.73	5.01	5			
	6	26251	13.30	52503	26.60	3.01	3			
	4	41741	21.15	83483	42.30	1.01	1			
	2	66371	33.63	132743	67.26	-0.989	-2	2/0		
	1	83693	42.41	167385	84.82	-1.989	-3	3/0		
1/0	0	105535	53.48	211069	106.95	-2.989	-4	4/0		
2/0	-1	133077	67.43	266153	134.86	-	-	266kcmil		

Note: 1/0 does not appear in twin AWG but mm2 twinned 25mm2 is close to 1/0 or zero AWG (0.23 AWG)

Table 2

Wire size of a single wire

Trine size of a single trine				Approximate wife size when putting two wifes into a twin retraile					
AWG		SINGLE	SINGLE	TWIN (X2)	TWIN (X2)	AWG TWIN (X2)	AWG TWIN (X2)	AWG Aughts	
Aughts	AWG	Cmils	mm2	Cmils	mm2	Logical #	Rounded	Range	
	18.40	1480	0.75	2960	1.50	15.41	15.4		
	17.16	1974	1.00	3947	2.00	14.17	14.2		
	15.41	2960	1.50	5921	3.00	12.42	12.4		
	13.21	4934	2.50	9868	5.00	10.22	10.2		
	11.18	7894	4.00	15788	8.00	8.19	8.2		
	9.43	11841	6.00	23682	12.00	6.44	6.4		
	7.23	19735	10.00	39471	20.00	4.24	4.2		
	5.20	31576	16.00	63153	32.00	2.21	2.2		
	3.28	49338	25.00	98677	50.00	0.29	0.3	1AWG-1/0	
	1.83	69074	35.00	138147	70.00	-1.16	-2.2	2/0-3/0	

By definition, 36 AWG is 0.005 inches in diameter, and 0000 AWG is 0.46 inches in diameter. The ratio of these diameters is 1:92, and there are 40 gauge sizes from 36 to 0000, or 39 steps. Because each successive gauge number increases cross sectional area by a constant multiple, diameters vary geometrically. Any two successive gauges (e.g., A and B) have diameters whose ratio (dia. $B \div$ dia. A) is (approximately 1.12293), while for gauges two steps apart (e.g., A, B, and C), the ratio of the C to A is about 1.12293° and 1.26098. Similarly for gauges B steps apart the ratio of the first to last gauges is about 1.12293°.

100.00

0.29

98677

50

~1-1/0

-3.7

3/0-4/0

-2.70

$$A_n = \left(5 \times 92^{\frac{36-n}{39}}\right)^2 \quad \begin{array}{c} = (5*92 \wedge ((36-\text{B13})*1/39)) \wedge 2 \\ \text{CM to mm2} \\ \text{X 50670.75 x10^-8} \end{array} \\ \text{AWG} = 36 - \frac{39}{2 \cdot \log_{10}(92)} \cdot \log_{10}\left(\frac{\text{CM}}{25}\right) \end{array}$$

 $\underline{https://lugsdirect.com/AWG-CalculatorPage.htm?srsltid=AfmBOooDXW0InyAC4zm0Y9zojn1wYFAB59YporNTw3rbGnjhknOw9CbK}$

197353

CHAS RIDLEY IHI CONNECTORS 4-14-2019, 6-15-2025 © IHI Connectors ® ALL RIGHTS RESERVED 2025

	Diameter		Cross Section	onal Area	Circular Mils	;
Input AWG	Wire Dia.	Wire Dia.	Wire Area	Wire Area	СМ	kcmil or MCM
number here:	Inches	mm	inch2	mm2	Circular Mils	kcmil
15.011	0.0570	1.448	0.002551	1.6460	3248.5	3.2485